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Abstract

DNA sequence data from four gene regions (28S, 18S, 16S5-ND1, and CO1) were gathered from 65 jumping spider (sal-
ticid) taxa to supplement previously gathered molecular data for the family's phylogeny. The additional taxa are mostly
from Australasia and other regions of the Old World. Bayesian and parsimony analyses support a clade, here called the
Astioida, representing alarge proportion of the Australasian fauna. Included in the Astioida are, for example, the robust-
bodied Smaetha and Mopsus, the flattened bark-dweller Holoplatys, the delicate foliage-dweller Tauala, the antlike
Myrmarachne and the litter-dwelling Neon. One astioid, Rhondes neocaledonicus, is returned to that genus from its
placement in Hasarius. Another newly supported clade, the Aelurilloida, includes the aelurillines, the freyines, and the
Bacelarella group of genera. Other newly delimited clades are the Philaeus group (Philaeus, Mogrus, Carrhotus and oth-
ers), the Leptorchesteae (Leporchestes, Yllenus and Paramarpissa) and the Hasarieae (Hasarius, Habrocestum and Chi-
nattus). These results concur with previous discoveries (e.g., Amycoida, Marpissoida) in suggesting that salticid clades
are largely restricted to continental regions.
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I ntroduction

Jumping spiders (Salticidae) form a clade of about 5000 described species (Platnick 2008), characterized by a
unique high-resolution visual apparatus (Land 1969; Eakin & Brandenburger 1971). These species are distrib-
uted on all continents except Antarctica, and show a great diversity of behaviours (Jackson & Pollard 1996)
and body forms (Simon 1901, 1903). Early work on their systematics and phylogenetic rel ationships put much
emphasis on the general form of the body, using it to delimit large groups (Simon 1901, 1903) as well asto
assign North American species into European genera such as Icius Simon, Pseudicius Simon and Habroces-
tum Simon (e.g., Peckham & Peckham 1909). However, as more attention was paid to genitalic characters
later in the 20th century (e.g., Prészynski 1976), it became clear that the New World species were misplaced
in these Old World genera. Indeed, recent molecular phylogenetic studies (Maddison & Hedin 2003; Maddi-
son & Needham 2006; Maddison et al. 2007) have revealed both convergence of body forms and a deep bio-
geographical divide between the Old World and New World. This was emphasized by the discovery of the
clade Amycoida (Maddison & Hedin 2003), which is perhaps the dominant Neotropical group (in terms of
numbers of species and phenotypic diversity) but which has only one relatively small and uniform lineage
(Stticus Simon) in the Old World. Conversely, the Heliophaninae and Plexippinae are both major Old World
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groups with only afew New World species (Maddison & Hedin 2003).

However, our understanding of worldwide salticid phylogeny and these biogeographical patternsis ham-
pered both by the paucity of species from the Old World tropics included in molecular analyses to date (Mad-
dison & Hedin 2003) and by the lack of comprehensive morphologica phylogenetic studies. Here we begin to
rectify the former by expanding our molecular data to include many more species from the Old World, with an
emphasis on Australasian taxa

We have chosen to focus on the Australasian fauna because few suggestions have been made for the phy-
logenetic placement of many of its genera. Some common genera would appear by morphology to fall easily
within known groups: Maratus Karsch, Cytaea Keyserling, Servaea Simon and Zenodorus Peckham & Peck-
ham all appear to be members of the Euophryinae according to genitalia, for example. Others appear plausibly
close to groups outside of the region. Smaetha Thorell and Opisthoncus L. Koch by body form and genitalia
are similar to genera within the Plexippoida or Marpissoida. Mopsus Karsch and Sandalodes Keyserling
appear to have a movable embolus and in this respect resemble dendryphantines, euophryines and ballines.
Clynotis Simon and rel ated species are quite similar to the New World marpissines, to the extent that one spe-
ciesis currently placed within an otherwise Neotropical genus ("Breda” jovialis L. Koch). However, there is
one fairly large group recognized as perhaps endemic to the region: the Astieae, in which Wanless (1988)
includes 6 primarily Australian genera with no clear affinities to other salticids.

Material and methods

Taxon sampling. Previous work has provided sequences for several genesfor 107 taxa (89 from Maddison &
Hedin 2003; 17 additional from Maddison & Needham 2006; 1 additional from Maddison et al. 2007). In our
analyses here we use those sequences and add sequences from 65 additional taxa. Among the sequences used
from these previous papers are those from the outgroups, namely Xysticus sp., Hibana sp., Cesonia sp., and
Cheiracanthium sp., representing the families Thomisidae, Anyphaenidae, Gnaphosidae, and Miturgidae
respectively (for more details on these specimens see Maddison & Hedin, 2003). Because the sister group of
the Salticidae is not well resolved, these outgroups were chosen to represent a diversity of families of Diony-
cha, wherein lie the Salticidae.

In addition to a large sample of genera from Australia and New Caledonia, the taxa newly sequenced
include well-known Eurasian genera whose phylogenetic placement is poorly understood, such as Philaeus
Thorell, Carrhotus Thorell, Mogrus Simon, Yllenus Simon, and Leptorchestes Thorell. A sample of species
from Ghanais also included. A full list of the species newly sequenced is given in Appendix 1.

We composed our data matrices by adding the new sequences to those of Maddison and Hedin (2003),
Maddison and Needham (2006) and Maddison et al. (2007), with one exception. We have identified Maddison
and Hedin's "cf. Neaetha" as Pellenes bulawayoensis Wesolowska, and because of concerns with the quality
of the original sequences, we have replaced this taxon's sequences with newly obtained ones (Appendix 1).
Also, we have identified Maddison and Hedin's "unident. (Phil.)" as a Sagetilus sp., and their "unident. (Ec.)"
as Rishaschia sp. We refer to their "unident. (C.R.)" as"Costa Ricaindet.”.

Because some of the species are unidentified and from regions whose salticid faunas are poorly known,
we offer illustrations of some specimens from New Caedonia and Ghana (Figs. 1-7), so that they may be
more easily identified at alater date. The specimen identified as"cf. Mopsus' from New Caledonia (d202) has
apal p that resembles that of Mopsus mormon, but the body is coloured with varied shades of brown.

Sequencing. Four gene regions were amplified by PCR and sequenced: the nuclear 28S and 18S, and the
mitochondrial 16S5-ND1 and CO1. Primers used are those of Maddison and Needham (2006) except that for
many specimens we used primer ZX1 from Mallatt and Sullivan (1998) for 28S instead of primer 28SO. PCR
and sequencing were done as by Maddison and Needham (2006). Sequences were obtained from the chro-
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matogram files using Phred (Ewing & Green 1998; Ewing et al. 1998; Green & Ewing 2002) and Phrap
(Green 1999) as operated via the chromaseq package (D. Maddison & W. Maddison in prep.) for Mesquite
(Maddison & Maddison 2006), following the procedures used by Maddison and Needham (2006).

Sequence alignment. Multiple sequence alignments were carried out using ClustalX (Thompson et al.
1997) with gap opening and gap extension costs set either to 24 and 6 respectively ("24-6") following Madd-
ison and Hedin (2003) or 8 and 4 ("8-4") to provide an aternative alignment. The protein coding sequences of
ND1 and CO1 and the conservative 18S in genera seemed to have aligned easily with few indels except in
regions of 18S. For these regions, only the 24-6 alignments were used. For the non-coding regions of 16S-
ND1 and for 28S, both 24—6 and 84 alignments were analyzed. Also, minor editing of the aignments for the
ribosomal sequences was done manually using Mesquite (Maddison & Maddison 2006) to correct obvious
misalignments of short blocks (5-10 bases) near the ends of sequences. One additional complication arose at
the start of ND1.: the automatic alignment inserted many indels at the start of ND1 so as to obscure its bound-
ary with the poorly-aligned adjacent non-coding region. We used the amino acid translation to recognize what
bases actually belonged to ND1, generating a clear boundary for ND1. Once this boundary was found, the
non-coding region in front of it, including 16S and atRNA, was realigned on its own either with 24-6 or 84
parameters. Alignments have been deposited in TreeBASE (treebase.org, accession number: S2168).

Phylogenetic analysis. Phylogenetic analyses were performed using parsimony and Bayesian methods.
Bayesian analyses were done using MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001, Ronquist & Huelsenbeck
2003). MrModeltest (Nylander 2004) was used in combination with PAUP* (Swofford 2002) to choose the
appropriate model, which for all matrices was the GTR invariant-gamma model (nst=6 rates=invgamma).
Model parameters were permitted to differ among data partitions, with the partitions defined as follows: 28S;
18S; 16S; NDL1 first, second, and third codon positions; CO1 first, second, and third codon positions. When
ND1 and CO1 were included together in an analysis, they were united to yield 3 partitions (ND1+COL first,
second, and third codon positions) instead of 6. Each analysis was run via a command of the form "mcmcp
ngen= 50000000 printfreq=1000 samplefreq=1000 nchains=4 savebrlens=yes;". The All-Genes 24-6 matrix
was analyzed most thoroughly, with a Bayesian analysis run for 150 million generations. The All-Genes
matrix with 8-4 aignment was run for 50 million generations, individual gene regions for 10 million genera-
tions. After completion, Tracer (Rambaut & Drummond 2005) was used to determine when the posterior
probabilities had stabilized. Both runs output by MrBayes during a single analysis were used if they stabilized
to approximately the same posterior probabilities. Stabilization was judged by eye in the Tracer plot, and trees
from the point of stabilization to the end of the analysis were collected into a single tree file, which was then
imported into PAUP* (Swofford 2002) for generation of a majority rules consensus tree of sampled trees.

Parsimony analyses were done using PAUP* (Swofford 2002), treating character states as unordered (one
step for any state change). Gaps were treated as missing data. Analyses followed the methods of Maddison
and Needham (2006), using 20000 constrained random addition sequence replicates, whose trees were then
used as starting points for an unconstrained search.

Analyses were performed on the gene regions separately and combined. We present the results of 8 analy-
ses, four on the matrix combining all genes (28S, 18S, 16S-ND1, CO1), two on the 28S sequences aone, and
two on the 165-ND1 sequences alone. On the All-Genes data, a Bayesian analysis was performed on both the
24-6 and 8-4 alignments, and similarly a parsimony analysis was performed on both alignments. On the 28S
segquences, a Bayesian analysis was performed on both the 24-6 and 84 alignments, and similarly for the
16S-ND1 sequences. In addition to these 8 analyses, we explored other analyses (e.g., CO1 aone, all mito-
chondrial alone, 18S alone), but these either agreed substantially with what we present, or they gave little res-
olution.

With this study we add to our understanding of salticid phylogeny, but we continue to work actively to
sample many other unstudied taxa. Salticid classification is currently in disorder: it is a mix of formally
ranked subfamilies (e.g., Euophryinae, Dendryphantinae), ambiguously ranked groups of Simon (1901, 1903)
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(e.q., Adtiae, Hasariae), unranked but formally named taxa (e.g., Salticoida, Amycoida), and informal groups
discussed in the literature but not formally named astaxa (e.g., lapsiines, freyines). However, we will not here
undertake a comprehensive reform of the formal ranked classification of salticid subfamilies, becauseit is pre-
mature to do so: we anticipate many new phylogenetic results in the near future. Nonethel ess, we need names
to discuss clades. For this reason, we here give names to two large clades — the Astioida and Aelurilloida
Each encompasses several subfamilies, and is unranked. Formal definitions of these new names await further
study. In addition, two smaller clades are even more informally named: "the Philaeus group” and "the
Bacelarella group”. Both would be approximately of subfamilial rank according to the rankings currently
used in the family.

Ghana indet. d196

cf. Lystrocteissa Penionomus cf. Rogmocrypta cf. Nimbarus Pochyta cf. pannosa Ghana indet. d193

FIGURES 1-7. Genitalia of some of the more poorly identified taxa sequenced. 1 Left palp of cf. Lystrocteissa sp.
(voucher d054), which is small and narrow-bodied. 2 Left palp of Penionomus sp. (d122), medium sized, fairly robust,
and bronze. 3 Left palp of cf. Rogmocrypta sp. (d205), small, with body form reminiscent of Stticus. 4 Left palp of cf.
Nimbarus sp. (d218), whose long tibial apophysis extends dorsally over the cymbium. 5 Left palp of Pochyta cf. pannosa
Simon (d217), whose tegulum appears to be twisted so as to expose the basal hematadocha. 6 Left palp of Ghana indet.
d193. 7 Epigynum of Ghanaindet. d196, with two anteriolateral epigynal pockets.

Results and discussion

DNA sequences obtained are listed in Appendix 1, and results of phylogenetic analyses are summarized in
Figures 8-11. Figure 8 shows full details of taxaincluded. Figures 9-11 are compressed (already established
clades such as the Amycoida, Marpissoida and others are shown without internal resolution) and somewhat
trimmed (a second species of Massagris Simon and Phintella Strand are not shown). This is done to permit
enlarging the typeface for legibility of taxon names.

In the Bayesian analysis of the All-Genes matrix with the 24—6 alignment, trees sampled from the last 140
million generations of both of the two runs were combined to yield amajority rules consensus to estimate pos-
terior probabilities for clades (280000 trees sampled, Fig. 8). For the 84 alignment, the mgjority rules con-
sensus tree was taken from the last 40 million generations from both runs (80000 trees sampled). With the 28S
analysis, the last 9 million generations of both runs were used (18000 trees sampled). With the 165-ND1 anal-
ysis, one 246 run stabilized to lower likelihood than the other, and thus we used the other run after its stabili-
zation (last 6.8 million generations; 6800 trees sampled).

Support for the clades we discuss below was in general strong, with posterior probabilities estimated at
nearly 100% for many of the nodes in the All-Genes analysis (Figs. 8, 9). The 24-6 and 84 aignments
yielded similar results throughout (Fig. 9), although they disagreed about some clades in a few analyses, or
yielded dlightly different posterior probabilities.
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FIGURE 8. Tree from Bayesian analyses of combined matrix of all generegions (28S, 18S, 16S-ND1, CO1) using 24-6
alignment. Tree shown is magjority rules consensus of 280,000 trees sampled from generations 10 million through 150
million from each of two MrBayes runs. Beside branches are estimated posterior probabilities of clades.

The analysis with All-Genes shows patterns similar to those seen in previous studies: a reasonably well-
supported Salticoida, poor resolution of the basal divergences of the Salticoida, but with good resolution of
smaller groups within the Salticoida (Figs 8, 9). We judge two results of the 24-6 All-Genes analysis to be
erroneous:. the grouping of Goleba Wanless among the outgroups, and the placement of Hispo Simon apart
from the other hisponines (Tomocyrba and Massagris). Goleba's placement may have arisen from sparse
taxon sampling and long branches in the basal part of the tree. Asfor Hispo, the furrow between the posterior
median and posterior lateral eyesis good morphological evidence that it belongs with Tomocyrba and Massa-
gris. Its apparent misplacement is not surprising because we lack 28S sequence for Hispo, and thus its place-
ment is primarily dependent on the fast evolving mitochondria genes. Other analyses on particular subsets of
gene regions were attempted but they had little resolution (18S, CO1), and thus these regions have contributed
to the analysis only through the All-Genes analysis.
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Our results corroborate previously recognized groups such as the Marpissoida and Amycoida, and reveal
several new clades, including a large radiation of Australasian salticids. We will discuss the results group by
group.

Astioida (new). A large portion of the sampled species from Australia and New Caledonia fall within a
single clade (Figs. 8, 9) that we will name the Astioida, after the contained Astieae (Simon 1901; Wanless
1988). This clade is supported exactly or with some modification by all analyses with the All-Genes matrix. It
is supported by the Bayesian analysis on the 24—6 alignment (estimated posterior probability 0.891; excluding
Neon Simon 0.986), by the Bayesian analysis on the 84 alignment (but with Mantisatta Warburton included,
posterior probability 0.73), and by parsimony with both alignments (but with Neon excluded or Mantisatta
included). It is also supported in the analysis of 28S (Fig. 10).

Because the support for the proposed Astioida is reasonable, we will provisionally accept it as a single
clade. However, it is not without doubt, and in particular some subgroups may belong elsewhere. The Astioida
can be divided into five major subgroups, each of which appears consistently in various analyses: (1) the
Astiae proper (possibly including Orthrus Simon), (2) the antlike genera Myrmarachne MacLeay and
Ligonipes Karsch, (3) a clade with Mopsus and Sandal odes (see Zabka 2000), (4) alarge clade of diverse body
forms including Opisthoncus, Trite Simon, Holoplatys, and Smaetha, and (5) Neon. While the inclusion of
Neon and Myrmarachne among the Astioida may be in most doubt (e.g., Fig. 11), these may (as suggested by
the All-Genes analysis) be basa astioids, and thus their failure to group with the others by mitochondrial
genes may be due to those genes' high rate of evolution. Neon and Myrmarachne are unusual among the
Astioida also for being broadly distributed outside Australasia. Also, Mantisatta, placed with the Ballinae in
the All-Genes analysis (and with which it shares similar genitalia), in some analyses is grouped as sister to
Neon, and may belong in the Astioida.

The Astioida includes species of diverse body forms: robust and broad beetle-like species (Heratemita
Strand, Smaetha), narrow bodied elongate forms (Corambis Simon, Holoplatys), antlike species (Myrma-
rachne), and unremarkable species resembling dendryphantines or plexippines (Opisthoncus). Diversity in the
Astioida and their convergences with other groups can be seen by examining Simon's (1901-1903) classifica-
tion, which scatters the astioids among many groups based largely on general body form: he placed Arasia
Simon and Helpis Simon in the Astieae with what we now recognize as lapsiines and some members of the
Amycoida; Orthrus in the Lyssomaneae; Holoplatys and Corambis in the Marpissae; Sandalodes in the Hyl-
leae, Philaeus and others; Mopsus in the Thyeneae. The Astioida thus include pluridents, unidents and fissi-
dents (Simon 1901, 1903). Because of our results here, we support Patoleta's proposal (unpublished PhD
thesis, cited by Proszynski in his 2002 online Catalogue of Salticidae) to undo Zabka's (1988) combination
Hasarius neocal edonicus to return the species to Rhondes.

Morphologica synapomorphies for the Astioida are not yet known; its members are relatively little stud-
ied. Astioida genitalia in general are smple, with the embolus fixed to the tegulum. However, some species
(Mopsus, Sandal odes, Neon) appear to have a movable embolus. The member of the Astioidaabout which

-
FIGURE 9. Summary of phylogenetic analyses on combined matrix of all gene regions (28S, 18S, 16S-ND1, CO1).
Tree shown is magjority rules consensus of trees sampled from the Bayesian analysis of the 24—6 aligned data. Spots show
strength of support from this and other analyses. Top row refers to Bayesian analyses (24-6 and 84 alignments). Dark-
ness of spot shows estimated posterior probability of clade as explained at left. Bottom row refers to presence of cladein
strict consensus of all most parsimonious trees (black, present; white, absent). Lack of support spots on a branch does not
necessarily indicate the branch was poorly supported; for instance, support is not shown on branches within the Plexip-
poida and other groups because their internal relationships are not our focus of study. With the 24—6 alignment, 1170
most parsimonious trees were found of length 31378; with the 84 alignment, 72 trees were found of length 30377. Foot-
notes: * Eupoa included in clade. ? Hispo included in clade. * Corambis excluded from clade. * Corambis included in
clade. ® Mantisatta included in clade.
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most phylogenetic commentary has been made is Neon, which as we note above is only tentatively included
within the group. Logunov (1998) supports a relationship of Neon with Neonella Gertsch and Stticus. How-
ever, the traits Logunov cites as shared with Neonella (two teeth on cheliceral promargin, one on retromargin;
fourth leg longest; few but strong macrosetae; embolus with spicules; primary and secondary receptacles
present) do not appear to be synapomorphies of the two or even of asmall clade (Logunov does not claim they
are), and at least some of these occur in many other salticids. Thereislittle special that Neon and Neonella are
known to have in common apart from small size. The relationship with Stticusis supported by the presence of
well-marked primary and secondary receptacles (Logunov 1998), but the distribution of this condition across
the Salticidae has not been described. Thus, there are no known morphological synapomorphies uniting spe-
cifically Stticus, Neonella and Neon alone or in asmall clade. Our data strongly support a placement of Stti-
cus elsewhere, in the Amycoida (see below).

We suspect that the Astioida will include many other Australasian genera not sampled here such as Ocri-
siona Simon (Zabka 1990), Ligurra Simon and others (Zabka 1994), Sobasina Simon, and possibly Diolenius
Thorell. Few genera that we include among the Astioida are known from outside of Australia, New Zealand
and nearby islands. Holoplatys and Orthrus are known from mainland Asia, as are Smaetha-like genera (e.g.,
Ligurra). However, only two groups currently recognized as within the Astioida are distributed broadly
beyond Australasia and southeast Asia: the genera Neon and Myrmarachne. Both are widespread in the Old
World and have afew species in the New World.

L eptorchesteae. An unexpected result was the strong support for a relationship among Yllenus Simon,
Paramarpissa F.O. Pickard-Cambridge and Leptorchestes Thorell. Thefirst is an Old World ground-dwelling
genus resembling Habronattus F.O. Pickard-Cambridge, the second is a small tree-bark dwelling group from
the American deserts, and the third is an Old World ant mimic. Their relationship is strongly supported in the
All-Genes analysis, the 28S analysis, and partially supported (Leptorchestes and Yllenus) in the 16S5-ND1
analysis. Simon (1901) placed Yllenus with Sitticus; Proszynski (1976) placed it in the Aelurillinae. Logunov
(1998) suggested Yllenus is most probably near Menemerus and Plexippus, athough no data were cited. Men-
emerus is strongly supported as belonging with the Heliophaninae by molecular data (here and Maddison &
Hedin 2003); Plexippus belongs with Evarcha, Hyllus and others according to genitalic and somatic charac-
ters (Maddison 1996a) and DNA data (Maddison & Hedin 2003). Logunov and Cutler (1999) provisionally
placed Paramarpissa with Icius and Pseudicius based on similar spermathecal structure. However, they do
not indicate whether this similarity is a synapomorphy (restricted and derived). This association appears
unlikely, as Pseudiciusis strongly supported as amember of the Heliophaninae by our DNA data and previous
somatic and genitalic data (Maddison 1987). However, more recent comments by Logunov and Marusik
(2003) propose a relationship between Yllenus and Paramarpissa based on similar palpi. The relationship
with the ant-like Leptorchestes was unexpected, but we know of nothing in genitalia or other features that
would precludeit. We will use Simon's (1901) name for this group, although it is unclear whether other genera
currently included with Leptorchestes (Kima Peckham & Peckham, Enoplomischus Giltay; see Wesolowksa
& Szeremeta 2001) should remain. This group known from afew disparate generamay be small, for we know
of no other genera unsampled for molecular phylogeny that are obvious candidates for membership in this
group.

The Philaeus group. A broadly-supported group consists of 5 genera from Eurasia and Africa: Philaeus
Thorell, Carrhotus Thorell, Mogrus Simon, Tusitala Peckham and Peckham and Pignus Wesolowska. The
support from the All-Genes and 28S analyses is uncomplicated; the 165-ND1 analysis supports the group but
with Tomocyrba Simon included (erroneously, as it is a distantly related basal salticid, a member of the His-
poninae — see Maddison & Needham 2006). Although not obvious in Carrhotus, these genera share a promi-
nent lobe on the palp bulb just counterclockwise from the base of the embolus (left palp, ventral view). These
genera were scattered by Simon (1901, 1903) among the Hylleae, Aelurilleae and Hasarieae; by Proszynski
(1976) among the Heliophaninae, Hyllinae, and Plexippinae. Logunov (1995) proposed a relationship among
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Mogrus, Plexippoides Prészynski, Epeus Peckham and Peckham, Afraflacilla Berland and Millot, and Pseud-
icius, based on severa genitalic characters. None of these characters appears to be a synapomorphy of the
group: the lobe-like terminal apophysis is present more broadly in plexippines (Maddison 1996a) and
heliophanines (Maddison 1987), while many other salticids share the other features (curved cymbium, con-
spicuous distal haematodocha, simple sperm duct, lack of epigynal pocket, simple copulatory openings, prom-
inent accessory glands, distinct spermathecae). Other morphological and DNA data separate these genera
(placing Afraflacilla and Pseudicius in the Heliophaninae, and Epeus in the Plexippinae). Because the mor-
phological data available do not contradict our proposed group, we will accept it based on DNA data. Asthere
is no available name for this group, we will use the informa name "Philaeus group” for it. The All-Genes
analysis gives good support of arelationship of the Philaeus group with Salticus Latreille and the Plexippoida
(Figs. 8, 9).

Hasarieae. A very strongly supported group includes three sampled genera: Hasarius Simon, Habroces-
tum Simon, and Chinattus Logunov. These share a compact body, similar markings and a small pocket hidden
on the dorsal surface of the back edge of the epigynum (Logunov 1999, figs. 17 and 45). The relationship
between Chinattus and Habrocestum has been suggested already (Logunov 1999; Edwards 2002), but the link
to Hasariusis new. Although Simon (1903) included many generain the Hasarieae (including many now con-
sidered euophryines), we redefine the group to include the three genera sampled here. Based on similar mor-
phology, we tentatively place Habrocestoides Prészynski, Hasarina Schenkel, and Mikrus Wesolowska al so
within the Hasarieae.

Bacelarella group. Several species from Ghana with diverse genitaliaal fell, to our surprise, as asingle
clade. Because we have as yet little information as to what described genera might belong here, we will not
erect a forma name for this group, but refer to them as the Bacelarella group. Jocqué and Szlts (2001)
describe a radiation of Bacelarella Berland and Millot in west African forests; our results suggest that this
may be part of alarger radiation that has generated genitalic forms more diverse than found in most recog-
nized subfamilies — cf. Nimbarus (Fig. 4) has along dorsal tibial apophysis, Pochyta cf. pannosa (Fig. 5)
appears to have the tegulum folded back so as to expose the basal hematodocha, and Ghanaindet. d193 (Fig.
6) has the embolus fixed to the tegulum. The separation of Bacelarella iactans and B. cf. pavida (Fig. 8) sug-
gests that Bacelarella as conceived by Sz(ts and Jocqué (2001) is polyphyletic, assuming that our sampled
Ghanan species do not all belong in one genus.

Adurilloida (new). The All-Genes Bayesian analyses and one of the 28S analyses indicate a relationship
among the aelurillines, freyines, and the Bacelarella group (Figures 8, 10). The 16S-ND1 anadysis puts the
freyines and Bacelarella group together (with afew other genera). Because of the strong support from the All-
Genes Bayesian analyses, we will give this provisional clade a name, the Adlurilloida.

Heliophaninae. Pseudicius Simon, Cosmophasis Simon and Mexcala Peckham and Peckham, as
expected based on morphology, were placed within the Heliophaninae.

Euophryinae. Cytaea Keyserling, as expected from its genitalia, fell clearly within the Euophryinae.

Plexippoida. Maddison and Hedin (2003) showed that the Pelleninae and Plexippinae are sister groups,
together comprising the Plexippoida. With our new sequences we have confirmed, as expected (Maddison
1996a), that Hyllus C.L. Koch and Thyene Simon are plexippines. In addition, the African Polemus Simon,
Baryphas Simon, and Schenkelia L essert are plexippines, asis the Asian Anarrhotus Simon. In the pellenines,
Bianor Peckham & Peckham and Sbianor Logunov are related. Pellenes montanus and therefore also its
close relative (or senior synonym) P. lapponicus Sundevall are confirmed to be pellenines (Logonuv &
Marusik 2000), and not members of the plexippine Evarcha Simon as proposed by Logunov et al. (1999).
Cheliceroides Zabka, which resembles (at least superficially) Evarcha, groups with the Plexippoida by 16S-
ND1 (Fig. 11), but the more complete matrix excludes it from the Plexippoida and shows it branching deep
within the Salticoida (Figs. 8, 9). Perhaps further sampling from southeast Asia will find close relatives of
Cheliceroides.
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Marpissoida. Maddison and Hedin (2003) delimited the Marpissoida to include the Dendryphantinae,
Marpissinae and a few other genera. Our new sequences for Synagel es noxiosa show that it is, unsurprisingly,
sister to Peckhamia Simon (Fig. 8).

Amycoida. The Amycoida (Maddison & Hedin 2003) remains a well supported clade. We have added to
the analysis Sitticus palustris Peckham and Peckham. It goes with the Sitticus sp. from Ecuador and the Jollas
sp. (Fig. 8), confirming that the Holarctic Stticus do indeed belong with the Neotropical Stticus, within the
Amycoida. Logunov (1998) had suggested Jollasisless closely related to Sitticus than is Neon based on geni-
talic peculiarities of Jollas, but such autapomorphies would not rule out a close relationship of Jollas and St-
ticus. Apart from the mal€e's coppery sheen, Jollasin many respects (genitalia, body form, leg proportions, and
so0 on) resembles closely many small species of Stticus. The DNA data support a Jollas-Sitticus relationship
to the exclusion of Neon (which is not amember of the Amycoida by any molecular analysis).

Basal salticids. The Salticoida are monophyletic according to Bayesian and one of the parsimony analy-
ses on all genes (Fig. 9). Outside this are the so-called "basal salticids", including the lyssomanines, spar-
taeines, lapsiines, hisponines, and Eupoa Zabka. These results match those previously reported by Maddison
& Needham (2006) and Maddison et al. (2007) based on a smaller sample of species.

Asyet poorly sampled among our taxa are southeast Asian and rainforest African salticids. The southeast
Asian ground-dwelling Nannenus Simon and Idastrandia Strand group together strongly, but are consistently
isolated from the other major groups. Bavia Simon and Sagetilus Simon, foliage or suspended litter dwellers
which superficially resemble Marpissa C.L. Koch or Metacyrba F. O. Pickard-Cambridge, are shown in Fig-
ures 8 and 9 as sister to the Astioida, but in other analyses they fall as sister to the Marpissoida.

These phylogenetic results continue to strengthen the pattern (Maddison & Hedin 2003) of large clades
being mostly confined to a continental region, and continental regions being dominated by a few clades: the
Marpissoida, Amycoida, Euophryinae and the freyines in the Americas, the Heliophaninae, Plexippoida,
Aedlurillinae in Eurasia and much of Africa; and the Astioida and Euophryinae in Australasia. However, the
picture is still incomplete. With better phylogenetic sampling, especially from rainforest Africa and other
regions of Asiaand Australasia, we will be in aposition to understand more fully the biogeography of salticid
diversification.

Our choice to use DNA data was based in part on the speed by which it may be gathered. We would have
preferred a joint molecular-morphological analysis, but sadly the morphological data are not yet availablein a
form that can be analyzed. Morphology has informed the current study, but indirectly — our sampling of taxa
and interpretation of results would have been severely hampered had the senior author not had decades of
experience with salticid morphology. Direct and thorough morphological studies will be important for a com-
plete understanding of the phylogeny of the Saticidae. We are starting to understand their morphology, for
instance through recent studies of genitalia (Logunov 1998; Logunov & Cutler 1999; Maddison 1996a;
Prészynski 1976). In particular, the discovery that the "tegulum” of some salticids may be a composite of two
sclerites (Logunov & Cutler 1999; Logunov 1999) could provide the basis for understanding many new char-
acters in palpi. However, these studies have involved only a few characters and been completed in too few
genera. Single characters described in a handful of taxa do not permit analysis. At the moment, therefore, we
do not have the morphological data to analyze. In addition, to understand data as phylogenetic evidence, we
need analyze them using logical (synapomorphy) or quantitative (e.g., parsimony) phylogenetic methods,
which have rarely been used in systematic studies within the Salticidae. At the very least, a character when
used as phylogenetic evidence should be described as an explicit claim of a synapomorphy with a clearly
stated distribution. Few papers have attempted to make precise claims of morphological synapomorphies
across the breadth of the Salticidae (e.g. Wanless 1984; Maddison 1987, 1996a). Even better would be afor-
mal matrix of many characters scored in many genera. Quantitative analysis of a morphological matrix has
been undertaken very rarely in the Salticidae (e.g., Rodrigo & Jackson 1992). Morphologica data are vital not
only for a more comprehensive phylogeny but also for a deeper understanding of the spiders evolution (Mad-
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dison 1996b). It is our hope that the DNA data will stimulate comprehensive studies to score and analyze
well-defined morphological characters formally across a broad range of genera.
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